Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 215: 106406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995943

RESUMO

The baculovirus expression system is a powerful and widely used method to generate large quantities of recombinant protein. However, challenges exist in workflows utilizing either liquid baculovirus stocks or the Titerless Infected-Cells Preservation and Scale-Up (TIPS) method, including the time and effort to generate baculoviruses, screen for protein expression and store large numbers of baculovirus stocks. To mitigate these challenges, we have developed a streamlined, hybrid workflow which utilizes high titer liquid virus stocks for rapid plate-based protein expression screening, followed by a TIPS-based scale-up for larger protein production efforts. Additionally, we have automated each step in this screening workflow using a custom robotic system. With these process improvements, we have significantly reduced the time, effort and resources required to manage large baculovirus generation and expression screening campaigns.


Assuntos
Baculoviridae , Triagem , Fluxo de Trabalho , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas Recombinantes , Vetores Genéticos
2.
J Virol ; 97(12): e0105223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032197

RESUMO

IMPORTANCE: Human metapneumovirus (hMPV) is a common pathogen causing lower respiratory tract infections worldwide and can develop severe symptoms in high-risk populations such as infants, the elderly, and immunocompromised patients. There are no approved hMPV vaccines or neutralizing antibodies available for therapeutic or prophylactic use. The trimeric hMPV fusion F protein is the major target of neutralizing antibodies in human sera. Understanding the immune recognition of antibodies to hMPV-F antigen will provide critical insights into developing efficacious hMPV monoclonal antibodies and vaccines.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Metapneumovirus/fisiologia , Infecções por Paramyxoviridae/imunologia , Proteínas Virais de Fusão , Vacinas Virais/imunologia
3.
Proc Natl Acad Sci U S A ; 120(42): e2220029120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812700

RESUMO

Voltage-gated potassium channels (Kv) are tetrameric membrane proteins that provide a highly selective pathway for potassium ions (K+) to diffuse across a hydrophobic cell membrane. These unique voltage-gated cation channels detect changes in membrane potential and, upon activation, help to return the depolarized cell to a resting state during the repolarization stage of each action potential. The Kv3 family of potassium channels is characterized by a high activation potential and rapid kinetics, which play a crucial role for the fast-spiking neuronal phenotype. Mutations in the Kv3.1 channel have been shown to have implications in various neurological diseases like epilepsy and Alzheimer's disease. Moreover, disruptions in neuronal circuitry involving Kv3.1 have been correlated with negative symptoms of schizophrenia. Here, we report the discovery of a novel positive modulator of Kv3.1, investigate its biophysical properties, and determine the cryo-EM structure of the compound in complex with Kv3.1. Structural analysis reveals the molecular determinants of positive modulation in Kv3.1 channels by this class of compounds and provides additional opportunities for rational drug design for the treatment of associated neurological disorders.


Assuntos
Neurônios , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio/metabolismo , Potenciais de Ação/fisiologia , Proteínas de Membrana/metabolismo
4.
Sci Adv ; 9(19): eadg3433, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163594

RESUMO

Communication between infected cells and cells in the surrounding tissue is a determinant of viral spread. However, it remains unclear how cells in close or distant proximity to an infected cell respond to primary or secondary infections. We establish a cell-based system to characterize a virus microenvironment, distinguishing infected, neighboring, and distal cells. Cell sorting, microscopy, proteomics, and cell cycle assays allow resolving cellular features and functional consequences of proximity to infection. We show that human cytomegalovirus (HCMV) infection primes neighboring cells for both subsequent HCMV infections and secondary infections with herpes simplex virus 1 and influenza A. Neighboring cells exhibit mitotic arrest, dampened innate immunity, and altered extracellular matrix. Conversely, distal cells are poised to slow viral spread due to enhanced antiviral responses. These findings demonstrate how infection reshapes the microenvironment through intercellular signaling to facilitate spread and how spatial proximity to an infection guides cell fate.


Assuntos
Coinfecção , Viroses , Humanos , Citomegalovirus/metabolismo , Imunidade Inata , Comunicação Celular
5.
Anal Chem ; 94(2): 704-713, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34983182

RESUMO

In this work, we developed an ultra-sensitive CE-MS/MS method for bottom-up proteomics analysis of limited samples, down to sub-nanogram levels of total protein. Analysis of 880 and 88 pg of the HeLa protein digest standard by CE-MS/MS yielded ∼1100 ± 46 and ∼160 ± 59 proteins, respectively, demonstrating higher protein and peptide identifications than the current state-of-the-art CE-MS/MS-based proteomic analyses with similar amounts of sample. To demonstrate potential applications of our ultra-sensitive CE-MS/MS method for the analysis of limited biological samples, we digested 500 and 1000 HeLa cells using a miniaturized in-solution digestion workflow. From 1-, 5-, and 10-cell equivalents injected from the resulted digests, we identified 744 ± 127, 1139 ± 24, and 1271 ± 6 proteins and 3353 ± 719, 5709 ± 513, and 8527 ± 114 peptide groups, respectively. Furthermore, we performed a comparative assessment of CE-MS/MS and two reversed-phased nano-liquid chromatography (RP-nLC-MS/MS) methods (monolithic and packed columns) for the analysis of a ∼10 ng HeLa protein digest standard. Our results demonstrate complementarity in the protein- and especially peptide-level identifications of the evaluated CE-MS- and RP-nLC-MS-based methods. The techniques were further assessed to detect post-translational modifications and highlight the strengths of the CE-MS/MS approach in identifying potentially important and biologically relevant modified peptides. With a migration window of ∼60 min, CE-MS/MS identified ∼2000 ± 53 proteins on average from a single injection of ∼8.8 ng of the HeLa protein digest standard. Additionally, an average of 232 ± 10 phosphopeptides and 377 ± 14 N-terminal acetylated peptides were identified in CE-MS/MS analyses at this sample amount, corresponding to 2- and 1.5-fold more identifications for each respective modification found by nLC-MS/MS methods.


Assuntos
Proteômica , Espectrometria de Massas por Ionização por Electrospray , Eletroforese Capilar/métodos , Células HeLa , Humanos , Fosfopeptídeos , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
6.
Acta Biomater ; 132: 473-488, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153511

RESUMO

Cancer is driven by both genetic aberrations in the tumor cells and fundamental changes in the tumor microenvironment (TME). These changes offer potential targets for novel therapeutics, yet lack of in vitro 3D models recapitulating this complex microenvironment impedes such progress. Here, we generated several tumor-stroma scaffolds reflecting the dynamic in vivo breast TME, using a high throughput microfluidic system. Alginate (Alg) or alginate-alginate sulfate (Alg/Alg-S) hydrogels were used as ECM-mimics, enabling the encapsulation and culture of tumor cells, fibroblasts and immune cells (macrophages and T cells, of the innate and adaptive immune systems, respectively). Specifically, Alg/Alg-S was shown capable of capturing and presenting growth factors and cytokines with binding affinity that is comparable to heparin. Viability and cytotoxicity were shown to strongly correlate with the dynamics of cellular milieu, as well as hydrogel type. Using on-chip immunofluorescence, production of reactive oxygen species and apoptosis were imaged and quantitatively analyzed. We then show how macrophages in our microfluidic system were shifted from a proinflammatory to an immunosuppressive phenotype when encapsulated in Alg/Alg-S, reflecting in vivo TME dynamics. LC-MS proteomic profiling of tumor cells sorted from the TME scaffolds revealed upregulation of proteins involved in cell-cell interactions and immunomodulation in Alg/Alg-S scaffolds, correlating with in vivo findings and demonstrating the appropriateness of Alg/Alg-S as an ECM biomimetic. Finally, we show the formation of large tumor-derived vesicles, formed exclusively in Alg/Alg-S scaffolds. Altogether, our system offers a robust platform for quantitative description of the breast TME that successfully recapitulates in vivo patterns. STATEMENT OF SIGNIFICANCE: Cancer progression is driven by profound changes in both tumor cells and surrounding stroma. Here, we present a high throughput microfluidic system for the generation and analysis of dynamic tumor-stroma scaffolds, that mimic the complex in vivo TME cell proportions and compositions, constructing robust in vitro models for the study of the TME. Utilizing Alg/Alg-S as a bioinspired ECM, mimicking heparin's in vivo capabilities of capturing and presenting signaling molecules, we show how Alg/Alg-S induces complex in vivo-like responses in our models. Alg/Alg-S is shown here to promote dynamic protein expression patterns, that can serve as potential therapeutic targets for breast cancer treatment. Formation of large tumor-derived vesicles, observed exclusively in the Alg/Alg-S scaffolds suggests a mechanism for tumor survival.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Biomimética , Feminino , Humanos , Microfluídica , Proteômica
7.
J Proteome Res ; 20(3): 1676-1688, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33625864

RESUMO

In-depth LC-MS-based proteomic profiling of limited biological and clinical samples, such as rare cells or tissue sections from laser capture microdissection or microneedle biopsies, has been problematic due, in large, to the inefficiency of sample preparation and attendant sample losses. To address this issue, we developed on-microsolid-phase extraction tip (OmSET)-based sample preparation for limited biological samples. OmSET is simple, efficient, reproducible, and scalable and is a widely accessible method for processing ∼200 to 10,000 cells. The developed method benefits from minimal sample processing volumes (1-3 µL) and conducting all sample processing steps on-membrane within a single microreactor. We first assessed the feasibility of using micro-SPE tips for nanogram-level amounts of tryptic peptides, minimized the number of required sample handling steps, and reduced the hands-on time. We then evaluated the capability of OmSET for quantitative analysis of low numbers of human monocytes. Reliable and reproducible label-free quantitation results were obtained with excellent correlations between protein abundances and the amounts of starting material (R2 = 0.93) and pairwise correlations between sample processing replicates (R2 = 0.95) along with the identification of approximately 300, 1800, and 2000 protein groups from injected ∼10, 100, and 500 cell equivalents, resulting from processing approximately 200, 2000, and 10,000 cells, respectively.


Assuntos
Proteômica , Manejo de Espécimes , Cromatografia Líquida , Humanos , Espectrometria de Massas , Fluxo de Trabalho
8.
Protein Expr Purif ; 179: 105796, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33221505

RESUMO

TREM2 has been identified by genomic analysis as a potential and novel target for the treatment of Alzheimer's disease. To enable structure-based screening of potential small molecule therapeutics, we sought to develop a robust crystallization platform for the TREM2 Ig-like domain. A systematic set of constructs containing the structural chaperone, maltose binding protein (MBP), fused to the Ig domain of TREM2, were evaluated in parallel expression and purification, followed by crystallization studies. Using protein crystallization and high-resolution diffraction as a readout, a MBP-TREM2 Ig fusion construct was identified that generates reproducible protein crystals diffracting at 2.0 Å, which makes it suitable for soaking of potential ligands. Importantly, analysis of crystal packing interfaces indicates that most of the surface of the TREM2 Ig domain is available for small molecule binding. A proof of concept co-crystallization study with a small library of fragments validated potential utility of this system for the discovery of new TREM2 therapeutics.


Assuntos
Cristalização/métodos , Glicoproteínas de Membrana , Chaperonas Moleculares , Receptores Imunológicos , Proteínas Recombinantes de Fusão , Humanos , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
Anal Chem ; 92(21): 14702-14712, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33054160

RESUMO

In this work, we pioneered a combination of ultralow flow (ULF) high-efficiency ultranarrow bore monolithic LC columns coupled to MS via a high-field asymmetric waveform ion mobility spectrometry (FAIMS) interface to evaluate the potential applicability for high sensitivity, robust, and reproducible proteomic profiling of low nanogram-level complex biological samples. As a result, ULF LC-FAIMS-MS brought unprecedented sensitivity levels and high reproducibility in bottom-up proteomic profiling. In addition, FAIMS improved the dynamic range, signal-to-noise ratios, and detection limits in ULF LC-MS-based measurements by significantly reducing chemical noise in comparison to the conventional nanoESI interface used with the same ULF LC-MS setup. Two, three, or four compensation voltages separated by at least 15 V were tested within a single LC-MS run using the FAIMS interface. The optimized ULF LC-ESI-FAIMS-MS/MS conditions resulted in identification of 2,348 ± 42 protein groups, 10,062 ± 285 peptide groups, and 15,734 ± 350 peptide-spectrum matches for 1 ng of a HeLa digest, using a 1 h gradient at the flow rate of 12 nL/min, which represents an increase by 38%, 91%, and 131% in respective identifications, as compared to the control experiment (without FAIMS). To evaluate the practical utility of the ULF LC-ESI-FAIMS-MS platform in proteomic profiling of limited samples, approximately 100, 1,000, and 10,000 U937 myeloid leukemia cells were processed, and a one-tenth of each sample was analyzed. Using the optimized conditions, we were able to reliably identify 251 ± 54, 1,135 ± 80, and 2,234 ± 25 protein groups from injected aliquots corresponding to ∼10, 100, and 1,000 processed cells.


Assuntos
Cromatografia Líquida/métodos , Limite de Detecção , Espectrometria de Massas/métodos , Proteômica/métodos , Células HeLa , Humanos , Nanotecnologia , Fatores de Tempo
10.
J Am Soc Mass Spectrom ; 31(1): 73-84, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32881510

RESUMO

A method has been established to map a bacterial colony to the ever-expanding database of publicly available bacterial genomes by means of matrix-assisted laser desorption/ionization (MALDI) spectra. To accomplish this, spectra are mapped to the predicted masses of ∼65 families of mostly ribosomal proteins. Each of the ∼40 000 bacterial strains in the database receives scores, together with tables listing identified protein sequences and how the highest ranking strains are related to one another. The approach was first confirmed with 16 distinct species of bacteria from the Vibrionales whose genome had been sequenced. Identifications of a few species of bacteria from environmental samples from compost, lakes, and streams in Massachusetts are also reported. Most of these organisms map to known species in the Gammaproteobacteria and Firmicutes. The clades of bacteria deducible from shared ribosomal protein sequences do not always correspond well to named bacterial species. Instead, the identifications made by this methodology indicate groupings of organisms that can readily be distinguished by MALDI-TOF and indicate which polymorphisms in highly conserved proteins demarcate the groupings. Successful identifications highlight organism interrelationships that can be deduced from the available genomes, sorting together genomes into new proposed clades typically consistent with relationships deduced from DNA sequence analysis. In contrast, if for a high-quality spectrum from a fresh colony, no group of related organisms receives high scores, one might infer that no closely related genome has yet been deposited into the database.


Assuntos
Proteínas de Bactérias/química , Bases de Dados de Ácidos Nucleicos , Genoma Bacteriano/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aeromonas/química , Aeromonas/genética , Aeromonas/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Técnicas Bacteriológicas/métodos , Água Doce/microbiologia , Massachusetts , Reprodutibilidade dos Testes , Software , Vibrio/química , Vibrio/genética
11.
Brain Behav ; 7(7): e00659, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28729925

RESUMO

INTRODUCTION: Although collagen-rich deposits are the main component of neural scars, the patterns of their formation are ill defined. Essential to the biosynthesis of collagen fibrils are enzymes catalyzing posttranslational modifications and chaperones that control the formation of the collagen triple helix. Prolyl-4-hydroxylase (P4H) and heat shock protein-47 (HSP47) play a key role, and their production is upregulated during scar formation in human tissues. Alpha smooth muscle actin (αSMA) is also produced during fibrotic processes in myofibroblasts that participate in fibrotic response. In injured peripheral nerves, however, the distribution of cells that produce these markers is poorly understood. METHODS: The goal of this study was to determine the distribution of the αSMA-positive, HSP47-positive, and the P4H-positive cells to better understand the formation of collagen-rich fibrotic tissue (FT) in response to peripheral nerve injury. To reach this goal, we employed a rabbit model of crush-injury and partial-transection injury of the sciatic nerves. RESULTS: Our study demonstrated that αSMA is expressed in a relatively small number of cells seen in neural FT. In contrast, cells producing P4H and HSP47 are ubiquitously present in sites of injury of the sciatic nerves. CONCLUSION: We contemplate that these proteins may serve as valuable markers that define fibrotic activities in the injured peripheral nerves.


Assuntos
Colágeno/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Actinas/metabolismo , Animais , Biomarcadores , Feminino , Proteínas de Choque Térmico HSP47/metabolismo , Projetos Piloto , Coelhos
12.
PLoS One ; 12(2): e0172068, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182776

RESUMO

Skeletal dysplasias form a group of skeletal disorders caused by mutations in macromolecules of cartilage and bone. The severity of skeletal dysplasias ranges from precocious arthropathy to perinatal lethality. Although the pathomechanisms of these disorders are generally well defined, the feasibility of repairing established aberrant skeletal tissues that developed in the presence of mutant molecules is currently unknown. Here, we employed a validated mouse model of spondyloepiphyseal dysplasia (SED) that enables temporal control of the production of the R992C (p.R1192C) collagen II mutant that causes this disease. Although in our earlier studies we determined that blocking the expression of this mutant at the early prenatal stages prevents a SED phenotype, the utility of blocking the R992C collagen II at the postnatal stages is not known. Here, by switching off the expression of R992C collagen II at various postnatal stages of skeletal development, we determined that significant improvements of cartilage and bone morphology were achieved only when blocking the production of the mutant molecules was initiated in newborn mice. Our study indicates that future therapies of skeletal dysplasias may require defining a specific time window when interventions should be applied to be successful.


Assuntos
Osso e Ossos/patologia , Colágeno Tipo II/genética , Mutação de Sentido Incorreto , Osteocondrodisplasias/patologia , Osteogênese , Animais , Cartilagem/crescimento & desenvolvimento , Cartilagem/patologia , Colágeno Tipo II/metabolismo , Modelos Animais de Doenças , Camundongos , Osteocondrodisplasias/genética , Fenótipo
13.
J Orthop Res ; 35(5): 1038-1046, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27419365

RESUMO

Post-traumatic joint contracture is a frequent orthopaedic complication that limits the movement of injured joints, thereby severely impairing affected patients. Non-surgical and surgical treatments for joint contracture often fail to improve the range of motion. In this study, we tested a hypothesis that limiting the formation of collagen-rich tissue in the capsules of injured joints would reduce the consequences of the fibrotic response and improve joint mobility. We targeted the formation of collagen fibrils, the main component of fibrotic deposits formed within the tissues of injured joints, by employing a relevant rabbit model to test the utility of a custom-engineered antibody. The antibody was delivered directly to the cavities of injured knees in order to block the formation of collagen fibrils produced in response to injury. In comparison to the non-treated control, mechanical tests of the antibody-treated knees demonstrated a significant reduction of flexion contracture. Detailed microscopic and biochemical studies verified that this reduction resulted from the antibody-mediated blocking of the assembly of collagen fibrils. These findings indicate that extracellular processes associated with excessive formation of fibrotic tissue represent a valid target for limiting post-traumatic joint stiffness. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1038-1046, 2017.


Assuntos
Anticorpos/uso terapêutico , Contratura/prevenção & controle , Colágenos Fibrilares/metabolismo , Traumatismos do Joelho/terapia , Animais , Anticorpos/farmacologia , Colágeno Tipo I/antagonistas & inibidores , Colágeno Tipo III/metabolismo , Contratura/etiologia , Estudos de Viabilidade , Feminino , Traumatismos do Joelho/complicações , Traumatismos do Joelho/metabolismo , Coelhos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
14.
J Orthop Res ; 34(3): 489-501, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26241613

RESUMO

Post-traumatic joint contracture is a debilitating consequence of trauma or surgical procedures. It is associated with fibrosis that develops regardless of the nature of initial trauma and results from complex biological processes associated with inflammation and cell activation. These processes accelerate production of structural elements of the extracellular matrix, particularly collagen fibrils. Although the increased production of collagenous proteins has been demonstrated in tissues of contracted joints, researchers have not yet determined the complex protein machinery needed for the biosynthesis of collagen molecules and for their assembly into fibrils. Consequently, the purpose of our study was to investigate key enzymes and protein chaperones needed to produce collagen-rich deposits. Using a rabbit model of joint contracture, our biochemical and histological assays indicated changes in the expression patterns of heat shock protein 47 and the α-subunit of prolyl 4-hydroxylase, key proteins in processing nascent collagen chains. Moreover, our study shows that the abnormal organization of collagen fibrils in the posterior capsules of injured knees, rather than excessive formation of fibril-stabilizing cross-links, may be a key reason for observed changes in the mechanical characteristics of injured joints. This result sheds new light on pathomechanisms of joint contraction, and identifies potentially attractive anti-fibrotic targets.


Assuntos
Colágeno/metabolismo , Contratura/metabolismo , Traumatismos do Joelho/metabolismo , Articulação do Joelho/metabolismo , Animais , Contratura/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Traumatismos do Joelho/patologia , Articulação do Joelho/patologia , Proteínas/metabolismo , Coelhos
15.
Connect Tissue Res ; 55(2): 115-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24195607

RESUMO

Abstract This study focuses on the single-chain fragment variable (scFv) variant of the original IgA-type antibody, recognizing the α2 C-terminal telopeptide (α2Ct) of human collagen I, designed to inhibit post-traumatic localized fibrosis via blocking the formation of collagen-rich deposits. We have demonstrated that the scFv construct expressed in yeast cells was able to fold into an immunoglobulin-like conformation, but it was prone to forming soluble aggregates. Functional assays, however, indicate that the scFv construct specifically binds to the α2Ct epitope and inhibits collagen fibril formation both in vitro and in a cell culture model representing tissues that undergo post-traumatic fibrosis. Thus, the presented study demonstrates the potential of the scFv variant to serve as an inhibitor of the excessive formation of collagen-rich fibrotic deposits, and it reveals certain limitations associated with the current stage of development of this antibody construct.


Assuntos
Colágeno Tipo I/química , Epitopos/química , Peptídeos/química , Anticorpos de Cadeia Única/química , Linhagem Celular , Cicatriz/tratamento farmacológico , Cicatriz/genética , Cicatriz/imunologia , Colágeno Tipo I/genética , Colágeno Tipo I/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Peptídeos/genética , Peptídeos/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
16.
Connect Tissue Res ; 54(3): 187-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23586407

RESUMO

Inhibition of the extracellular process of collagen fibril formation represents a new approach to limiting posttraumatic or postsurgical localized fibrosis. It has been demonstrated that employing a monoclonal antibody that targets the C-terminal telopeptide of the α2 chain of collagen I blocks critical collagen I-collagen I interaction, thereby reducing the amount of collagen deposits in vitro and in animal models. Here, we developed a chimeric variant of a prototypic inhibitory antibody of mouse origin. The structure of this novel antibody was analyzed by biochemical and biophysical methods. Moreover, detailed biochemical and biological studies were employed to test its antigen-binding characteristics. The ability of the chimeric variant to block formation of collagen fibrils was tested in vitro and in high-density cultures representing fibrotic processes occurring in the skin, tendon, joint capsule, and gingiva. The potential toxicity of the novel chimeric antibody was analyzed through its impact on the viability and proliferation of various cells and by testing its tissue cross-reactivity in sets of arrays of human and mouse tissues. Results of the presented studies indicate that engineered antibody-based blocker of localized fibrosis is characterized by the following: (1) a correct IgG-like structure, (2) high affinity and high specificity for a defined epitope, (3) a great potential to limit the accumulation of collagen-rich deposits, and (4) a lack of cytotoxicity and nonspecific tissue reactivity. Together, the presented study shows the great potential of the novel chimeric antibody to limit localized fibrosis, thereby setting ground for critical preclinical tests in a relevant animal model.


Assuntos
Anticorpos/imunologia , Colágeno Tipo I/imunologia , Peptídeos/imunologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes/imunologia , Animais , Sequência de Bases , Técnicas Biossensoriais , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Colágenos Fibrilares/metabolismo , Fibrose/imunologia , Fibrose/patologia , Humanos , Imunoglobulina A/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina , Região Variável de Imunoglobulina/metabolismo , Cinética , Camundongos , Reação em Cadeia da Polimerase , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...